

Security Systems
MAP Intrusion Interface Base Specification

Page 1 of 39

MAP Open Intrusion Interface
Base Specification

en Technical Description

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 2 of 39

Table of Contents
1 Definitions, Acronyms and Abbreviations .. 4

2 Introduction ... 4

2.1 Purpose ... 4

2.2 Scope .. 4

2.3 Example .. 6

3 Basic Definitions ... 7

3.1 Data Format .. 7

3.2 Property Names ... 8

3.3 Resource Types and Versioning .. 9

3.4 Linking ... 10

3.5 Minimal Resource Example ... 10

3.6 Timestamps ... 10

3.7 Connection Handling ... 11

3.8 Command Execution ... 11

4 List Resource .. 11

5 Event Notification .. 14

5.1 General Concept ... 14

5.2 Subscription List Resource .. 17

5.2.1 Status Retrieval .. 18

5.2.2 Subscription .. 19

5.3 Subscription Resource ... 22

5.3.1 Status Retrieval .. 23

5.3.2 Fetch Events .. 24

5.4 Unsubscribe .. 27

6 String matching ... 28

7 Feature discovery ... 28

7.1 Status Retrieval ... 32

8 Supervision ... 32

9 Discovery .. 32

10 Communication ... 32

10.1 TCP ... 33

10.2 URI Encoding .. 33

10.3 Responses and Content Types .. 33

10.4 HTTP Response Codes ... 33

10.4.1 200 ("OK") .. 33

10.4.2 201 ("Created") ... 34

10.4.3 202 (“Accepted”) ... 34

10.4.4 204 ("No Content") ... 34

10.4.5 400 ("Bad Request") ... 34

10.4.6 401 ("Unauthorized") .. 34

10.4.7 403 ("Forbidden") ... 34

10.4.8 404 ("Not Found") ... 34

10.4.9 409 (“Conflict”) .. 34

10.4.10 414 (“Request-URI Too Long”) .. 34

10.4.11 503 ("Service Unavailable") ... 35

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 3 of 39

10.5 Security ... 35

10.5.1 Transport Layer Security .. 35

10.5.2 Certificate ... 36

10.5.3 Application Layer Security .. 36

11 Standard Errors ... 36

12 Change History ... 37

13 References .. 38

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 4 of 39

1 Definitions, Acronyms and Abbreviations

OII Open Intrusion Interface

REST Representational State Transfer

HTTP Hypertext Transfer Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security

IP Internet Protocol

MAP Modular Alarm Platform

Etag Entity Tag

URI Uniform Resource Identifier

2 Introduction

2.1 Purpose

This document describes the communication technology and concept for the access to and

control of the MAP5000 panel. The specified solution will enable the MAP5000 to communicate

to multiple clients such as management systems or smart phones in parallel.

The interface is following a RESTful design pattern, where the MAP5000 is offering resources

as a server that can be inspected and modified by a client using the HTTP protocol.

Standard security mechanisms TLS, HTTP digest are used to achieve secure communication.

2.2 Scope

The goal of the OII is to allow an easy access to the MAP5000 which does not require

dedicated drivers or proprietary technologies to interact with the panel. Thus, widely used,

standard technologies are employed wherever possible, to simplify usage of the OII.

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 5 of 39

Other Resources
(HTML, binary, config

files, etc.)

HTTP-REST

Area Arming Device History

Point Output ...

Open Intrusion Interface (scope)

OII Base Specification
Event

Notification

Data Format

List Resource

String Matching

Language

Security

Versioning

MAP5000 Resource Model

Standard Technologies (out of scope)

Fig. 1 OII Specification Overview

HTTP-REST

As its basis, the OII follows a RESTful design using HTTP as the communication technology.

HTTP-REST already provides a comprehensive set of functionality for communication in

distributed systems. In context of the OII, the following features are used in particular:

 HTTP 1.1 Protocol

 Verbs GET, PUT, POST, DELETE

 HTTP Response Codes

 HTTP User Authentication (HTTP digest)

 HTTPS based secure communication

OII Base Specification

In order to provide a unified access to a variety of functions of the MAP, the OII base

specification adds additional functionality and rules on top of REST.

In particular, the OII base specification defines:

 A unified format to represent information of the MAP based on JSON

 A versioning approach for the interface and its components to ensure forward and

backward compatibility

 An event notification mechanism for communication of spontaneous state changes and

events

 Batching capabilities for efficient communication and control of multiple resources

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 6 of 39

OII Resource Model

On top of the OII base specification, the MAP Resource Model defines in detail which resources

are provided (e.g. area, point, keypad), which information is contained in a resource and how

commands can be issued. Wherever possible the MAP Resources will follow the OII base

specification. In some cases, the MAP Resource Model may also use other types of resources

to accommodate special functionality e.g. for configuration export or firmware update.

2.3 Example

In order to show case the basic functionality of the OII, we are going to look at a simplified

example to inspect an area status and arm the area.

An area itself is modelled as a resource and therefore its status can be easily inspected using

an HTTP GET to its address. In the context of the OII, there is a one-to-one relationship

between the area’s SIID (as it is shown in RPS) and its URL. In our example, the area has the

SIID 1.1.Area.2.20. Its corresponding URL is /1.1.Area.2.20. Executing a GET on

“https://<panelIPAddressAndPort>/1.1.Area.2.20” will return:

Thus, we can simply inspect the status of the area and can deduct that it is not armed. Please

note that this is only a simplified example and that the actual resource will contain more

information.

As a second step, we now want to issue an arming command to this area. In context of the

MAP, arming is done by issuing a POST request to the area. Thus, we send a POST to the

URL “https://<panelIPAddressAndPort>/1.1.Area.2.20” that has the following content in the

request body:

Considering that the request has been accepted and the arming has been finished successfully,

the next GET request on the area will return:

{

 “@type”: “IN.area.1”,

 “@self”:”/ 1.1.Area.2.20”,

 “armed”: false

}

{

 “@cmd”: “ARM”

}

Fig. 3 Example Request Body

Fig. 2 Example Area Resource

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 7 of 39

3 Basic Definitions

3.1 Data Format

Resources compliant to the OII base specification will be encoded using JSON, as it provides a

suitable trade-off between data size and a well structured, human readable data format.

Libraries for JSON are available for most platforms and programming languages.

JSON itself basically defines the notion of objects which consist of name-value pairs. A value

itself can be an object, array, number, string, true, false or null. This allows the design of simple

key-value based data structures like in the example in Fig. 2, as well as complex structures with

object hierarchies like the one below.

The specific data structure of a dedicated resource is defined in scope of the MAP5000

Resource Model. Following the specification, the JSON object may contain whitespaces and

tabs in order to make it easier for humans to read. However, the data provided by the MAP will

not contain whitespaces or tabs in order to save bandwidth. It is suggested that clients also

remove any unnecessary mark up when sending data to the MAP for the same reason.

{

 “@type”: “IN.area.1”,

 “@self”:”/ 1.1.Area.2.20”,

 “armed”: true,

}

Fig. 4 Example Area Resource

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 8 of 39

In addition, OII clients need to make sure that they support the JSON format, including the

particular encoding rules for strings and numbers as defined in the JSON specification.

3.2 Property Names

JSON properties used in the scope of the OII must comply with the following rules (based on

[JSTY]):

 Property names should be meaningful names with defined semantics.

 Property names must be camel-cased, ascii strings.

 The first character must be a lowercase letter, an underscore (_) or a dollar sign ($).

 Subsequent characters can be a letter, a digit, an underscore, or a dollar sign.

 Reserved JavaScript keywords should be avoided (A list of reserved JavaScript

keywords can be found in [JSTY]).

Three property names and their semantics are specifically reserved:

Property Name Property Value

@type A list of resource type

identifiers specifying data

model and operations

available for this resource

@self A relative link specifying the

URL of this resource on the

OII server.

@cmd A string identifier of the

command that is to be

invoked. This property is used

 {

 “@type”: [“IN.areaList.1”,“OII.list.1”],

 “@self”:”/areas”,

 “list”:[

 {

 “@type”: “IN.area.1”,

 “@self”:”/1.1.Area.1.1”,

 “armed”: true

 },

 {

 “@type”: “IN.area.1”,

 “@self”:”1.1.Area.1.2”,

 “armed”: false

 }

]

}

Fig. 5 Example of complex JSON Object

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 9 of 39

in the scope of a POST

command to distinguish

different commands for the

same resource type (e.g. arm

and start walk test)

3.3 Resource Types and Versioning

As the OII Interface is the designated interface to the MAP5000 for the next years, it can be

expected that the interface itself will evolve and change over time. In order to assure that even

clients and servers that support different versions of the OII remain compatible, each resource

is annotated with a dedicate resource type. The resource type specifies the object structure of

the resource as well as the supported verbs and input/output parameters for the requests.

In order for a client to be informed of the resource type of a given resource, a resource includes

the property “@type”. The type itself is an array of type-strings. This allows definition of

interface inheritance relationships where a resource complies with multiple resource type

definitions, meaning that it provides all the associated objects and commands of the associated

types.

In order to facilitate versioning of the interface, the type-string structure is as follows:

<namespace>.<name>.<major>[.<minor>]

 Namespace: Mandatory element to indicate the overall context the type is derived from.

The namespace “OII” is reserved for types defined in the OII base specification. The

MAP5000 specific resource types use the namespace “IN”, indicating the context of

intrusion detection systems.

 Name: Mandatory element identifying the general resource type e.g. list, area, point.

 Major: Mandatory element defining the major version number. Clients and server that

support the same major server number should be generally compatible.

 Minor: Optional element indicating minor changes in the type (0, if not specified). The

resource is compatible with all prior minor versions, meaning that the same information

objects are available and the commands defined for the resource are supported. A

minor resource change may for example be the addition of a new object into the

resource.

Examples for resource types can be found in Fig. 6

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 10 of 39

3.4 Linking

Sometimes resources are included in other resources (e.g. in lists or events). In these cases, it

is important that a client can distinguish where the JSON object originates from. To this end,

each OII resource contains a JSON object “@self” which contains a link to itself.

The value of “@self” is the relative path of the resource URL, starting at the server’s root e.g.

“@self”:”/1.1.Area.1.2” or “@self”:”/description”. The client can use this link to directly interact

with the individual resource.

3.5 Minimal Resource Example

Following the above definitions, a minimal OII resource only includes the mandatory JSON

properties “@type” and “@self” and supports a GET.

3.6 Timestamps

All timestamps that are used in the context of the OII are compliant to the “Date and Time on

the Internet: Timestamps” [RFC3339] which is based on the ISO 8601 standard. It depends on

the specific resource whether the precision of the timestamp is in seconds (mandatory) or in

milliseconds (optional).

Examples for valid timestamps are:

2014-10-29T09:50:50+00:00

2014-10-29T09:50:50Z

2014-10-29T13:25:22.357-07:00

In some cases the resources will not provide time information. In these cases an ISO 8601

string shall be provided only containing the date information.

 {

 “@type”: [“IN.areaList.1”,“OII.list.1”]

}

{

 “@type”: [“IN.area.1.24”]

}

Fig. 6 Type Examples

{

 “@type”: [“ex.sample.1”],

 “@self”:”/my/u/r/l”

}

Fig. 7 Example Resource

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 11 of 39

Examples for valid date strings are:

2014-10-29

2000-01-01

2008-05-11

3.7 Connection Handling

A client may use one or multiple TCP connection to communicate with the MAP. The MAP will

follow the HTTP header information from the client, whether a TCP connection shall be closed

or kept open after a HTTP response is sent. Thus, a client may reuse the TCP connection for

multiple HTTP requests and thereby save time and bandwidth as TCP and TLS handshake are

only required once.

The MAP will close inactive connections after 120 seconds to prevent an unavailable client from

hogging system resources. In case the client sends requests regularly, the connection will be

kept open.

3.8 Command Execution

Commands that are sent to the system over OII will usually be forwarded to the system for

processing and a response is directly provided to the client with a 202 “Accepted” return code.

From this follows, that a client cannot assume that the command execution has already

succeeded with the execution, as the system may take time to finally take all necessary steps

as requested (e.g. arming 500 areas can take several seconds but the OII request will return as

soon as the arming process has been started). This also means that it is not guaranteed that

the command will be executed as requested. For example, arming of 500 areas may take

several seconds to succeed. It may happen that during that time an area becomes not ready to

arm, so that the arming of that area does not succeed. As a consequence only 499 areas will be

armed eventually. Therefore, a client needs to check for resource state changes of the

resources that it wants to control to verify whether command execution succeeded or not. The

client has to retry if the required status change (e.g. all 500 areas are “armed”) does not

happen.

Thus, a client that requires sequential command execution needs to validate the successful

execution of the command using the resource state before the next command is sent.

4 List Resource

In many scenarios clients want to access multiple resources with a single request. For example,

a client may be interested in the status of all areas in the panel. In case the panel is configured

with 20 areas, this would mean that the client needs to issue 20 requests (one for each area) to

get the required status information. In order to save bandwidth and communication effort, so

called list resources are defined that allow retrieval of information of multiple resources with a

single request.

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 12 of 39

As access to multiple resources is a general feature, we define the generic resource type

“OII.list.1”. A resource of type “OII.list.1” contains an object with the name “OII.list.1”. The

“OII.list.1” object is an array which contains a number of OII resources (see Fig. 8).

Depending on the situation, a client may want to access all or only some of the resources of the

list e.g. get status of 10 areas and not all 20. In order to allow a fine grained access to the

resource list, filters can be defined. In the response to a filter request, only the resources will be

included in the “list” object, which match these filters. Thus, filters can be used to optimize the

amount of data that is communicated.

Filters are specified in the query part of the URL. The following query parameters are supported

by a list:

 URL (url) A comma separated list of resource URLs to be included in the response to a

GET request e.g. https://panel/areas?url=/1.1.Area.2.5,/1.1.Area.2.7. In addition, the

string matching language defined in Chap 6 is used. This allows referencing of multiple

resource URLs with a short expression instead of listing all requested resource URLs

e.g. https://panel/areas?url=/1.1.Area.2.(5-15), https://panel/areas?url=/1.1.Area.2.*

 Atomic command (atomic) A parameter without value that specifies that a command

executed on a list shall be executed in an atomic way (e.g.

https://panel/areas?atomic&url=/1.1.Area.2.(5-15)). This means that the command shall

 {

 “@type”: [“IN.areaList.1”,“OII.list.1”],

 “@self”:”/areas”,

 “list”:[

 {

 “@type”: “IN.area.1”,

 “@self”:”/1.1.ControlPanelArea.1.1”,

 “armed”: true

 },

 {

 “@type”: “IN.area.1”,

 “@self:”/1.1.Area.2.1”,

 “armed”: false

 },

 {

 “@type”: “IN.area.1”,

 “@self”:”/1.1.Area.2.2”,

 “armed”: false

 }

]

}

Fig. 8 Simple List Resource Example

https://panel/areas?url=/1.1.Area.2.5,/1.1.Area.2.7
https://panel/areas?url=/1.1.Area.2.(5-15)
https://panel/areas?url=/1.1.Area.2.*

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 13 of 39

only be executed if all resources selected from the list can execute the command. For

example, if an arming command is send to a list of areas with the atomic flag, than the

command will only be executed if all areas are ready to arm. If one area is not ready to

arm, the command will be executed on none of the areas. A 409 “Conflict” response will

be provided with the list of resource URLs which prevented the execution of the

command. The list will be presented as a comma separated value string (e.g.

/1.1.Area.2.1,/1.1.Area.2.2,/1.1.Area.2.5) as content of the error response. Content type

of the response will be text/plain. Please note that the atomic flag prevents execution of

a command based on the status information of the resources at the time when the

request is received. After the command has been started it still may happen that the

command execution fails (e.g. device goes off normal before the arming command of

the area is processed completely).

In the absence of the atomic parameter the command is attempted to be executed on all

list entries where it is possible. In this case a 202 “Accepted” response will be provided.

The client will need to check on the individual resources whether the command has

really succeeded and the related resource property has changed as expected. In case

the resource does not change, it may have happened that the internal rules of the

MAP5000 have prevented the command to be executed. In case the command cannot

be executed on any element of the list, the 409 “Conflict” error response will be

provided. The content of the response will be “Not executed” as a plain text.

Fig. 9 depicts the response to a GET request to the list resource of Fig. 8 when using the

following filter https://panel/areas?url=/1.1.Area.2.*.

 {

 “@type”: [“IN.areaList.1”,“OII.list.1”],

 “@self”:”/areas”,

 “list”:[

 {

 “@type”: “IN.area.1”,

 “@self”:”/1.1.Area.2.1”,

 “armed”: false

 },

 {

 “@type”: “IN.area.1”,

 “@self”:”/1.1.Area.2.2”,

 “armed”: false

 }

]

}

Fig. 9 List Resource Response with Filter

https://panel/areas?url=/1.1.Area.2.*

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 14 of 39

A generic OII list resource only supports GET with the defined query parameters. PUT, POST

and DELETE are not supported by the generic OII.list.1 type. In case the query parameters do

not comply with the defined format, an error “400 Bad Request” will be returned.

Specific list resources can be defined that inherit from the generic list type and extend it with

support for other verbs and commands. For example, the resource type “IN.areaList.1” allows

arming of multiple areas by sending a POST to the list of areas. The specific list resources can

also reuse the defined query parameters in the context of other verbs, e.g. to execute an arming

on a subset of all areas.

The list resource will respond with a 409 (“Conflict”) if it doesn’t support the command.

5 Event Notification

5.1 General Concept

The OII includes an event notification mechanism that allows spontaneous transmission of state

changes (e.g. closing of a door contact) and occurrence of incidents (e.g. intrusion alarms). The

notification mechanism uses a publish-subscribe pattern, where a client has to register with the

MAP to specify which events it is interested in. This allows to custom tailor the events collected

for each individual client. For example, a client may subscribe only for incidents in the system.

In this case, it will only be notified about alarms and troubles but will not be notified about state

changes of peripherals, significantly reducing the amount of events to be communicated.

Once a subscription has been successfully created, the MAP will internally store the events for

the client in a ring buffer with a defined size. It is the task of the client to fetch the events by

issuing a request to a subscription specific URL.

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 15 of 39

Event delivery

The delivery of the events is done using a so called long polling mechanism. This means that

an incoming request to fetch events will not return an answer until either a sufficient amount of

events is available or a timer expires. A client specifies for each request how much events shall

be included in the response as a minimum (minEvents), as a maximum (maxEvents) and how

long the call is allowed to block at most (maxTime).

In general, a client needs to fetch its events periodically to make sure that all events are

received. The MAP will store only a limited amount of events for the client. In case events are

not fetched in time, the oldest events in the buffer are overridden (ring buffer). A client can

inspect the event id to recognize a buffer overflow. Even after a buffer overflow, MAP will

continue to collect events. It is the choice of a client if an overflow is acceptable or not. If not, a

client can unsubscribe to free the buffer and create a new subscription.

Lease time

A client also needs to ensure to poll for new events periodically, as the MAP will delete

subscriptions that have been inactive for a given time (lease time negotiated during

subscription). In cases where a client is not able to continuously poll events e.g. due to overload

conditions, a client can fetch events with maxEvents set to 0. Such a request will be interpreted

as subscription renewal but no events will be sent to the client.

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 16 of 39

Event structure

The system will create events in case of creation of a new resource, a state change of an

existing resource or on deletion of a resource. Each event will have a unique ID, a timestamp

which marks the time of occurrence, a type (created/changed/deleted) and the complete

resource representation. In addition, a list of property keys is included in a state change event

to indicate the properties that have changed in the resource. Fig. 10 depicts an example event.

The JSON object structure of an event is as follows:

 id: An ID that uniquely identifies the event. The event id has the following structure

<PanelEventID>.<SubscriptionSequenceNumber>

Panel Event ID: Panelwide, unique ID for this event. A client shall treat this ID

as an opaque string and should not assume any particular semantics of the

panel ID value. The panel event ID is independent of the individual subscription

and unique even over a power cycle of the MAP.

SubscriptionSequenceNumber: An integer that identifies an event in the

context of the subscription. The sequence number will be incremented for each

event that is stored for a specific subscription (starting with 0). A client can

inspect the sequence number of an event to deduct whether events have been

lost i.e. panel has overridden an event as the ring buffer is full. The number

ranges from 0 to 65535. In case this range is exceeded, the number is reset to 0

and continued to be incremented from then on. From this follows that a client

needs to be prepared to expect a sequence number of 0 as a valid successor to

65535.

 time: Local date time in millisecond precision compliant with the OII timestamp

definitions (e.g. 2014-10-29T13:25:22.357-07:00).

 type: A general classification of the event. Possible values are CHANGED (a state

change in a resource has occurred), CREATED (a resource has been created),

DELETED (a resource has been deleted).

 props: A list of property keys whose value has changed. The list contains at least a

single entry for an event of type CHANGED. In all other cases the list will be empty.

 evt: The resource representation of the resource that triggered the event. Please note

that also for a DELETED event the last status of the resource will be included.

{

 "id": 2345.4,

 "time": "2014-10-29T13:25:22.357-07:00",

 "type": "CHANGED",

 "props": ["armed"],

 "evt": {

 "@type": "IN.area.1",

 "@self": "/1.1.Area.2.1",

 "armed": false

}

}

Fig. 10 Event Example

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 17 of 39

Resource model

The client uses a central subscription resource (e.g. /sub) to subscribe for events of any

resource. If the subscription is accepted, a dedicated resource (e.g. /sub/1) is created which

represents the individual subscription. The client uses this resource to manage the subscription

(unsubscribe, extend lease) and to fetch events.

In the following, we define the resource model and operations for these resources.

5.2 Subscription List Resource

The subscription list resource allows access to all subscriptions. Furthermore, it is the location

where a client can create a subscription.

Overview

OII Type Supported Operations

OII.subList.1

OII.list.1

Status Retrieval

Subscribe

Object Structure

Name Type Value Range/Format Description

@type Array of

strings

["OII.subList.1", "OII.list.1"] Fixed type identifier

@self String URL starting with "/" Link to the current

resource

list Array Array of subscription object

structures

List of current

subscriptions

(respecting the access

rights of the user)

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 18 of 39

5.2.1 Status Retrieval

The information about the current subscriptions is provided, as defined in the previous sections.

Request

Verb GET

Query Parameters url Resource ID as specified for OII.list.1 optional

Response (Success)

Return Code 200

Content Subscription List object structure. The list object will only contain

resources which match the defined filters given in the query

{

 "@type": ["OII.sub.1"],

 "@self": "/sub/1",

 "list": [

 {

 "@type": ["OII.sub.1"],

 "@self": "/sub/1",

 "leaseTime": 600,

 "bufferSize": 50,

 "subscriptions": [

 {

 "urls": ["*"],

 "eventType": ["CREATED", "DELETED", "CHANGED"]

 }

]

 },

 {

 "@type": ["OII.sub.1"],

 "@self": "/sub/2",

 "leaseTime": 300,

 "bufferSize": 100

 "subscriptions": [

 {

 "urls": ["*"],

 "eventType": ["CREATED", "DELETED", "CHANGED"]

 }

]

 }

]

}

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 19 of 39

parameters.

Response (Error)

See Chap. 11 Standard Errors.

5.2.2 Subscription

In order to create a subscription, a client has to send a POST request to the subscription list

resource. The body of the POST request contains all relevant information about the

subscription.

This subscription details are:

 bufferSize: Number of events that will be stored by the MAP without overwriting an

entry.

 leaseTime: Maximum number of seconds between two subscription renewal activities

i.e. time between two event fetching requests. Lease time is encoded as JSON number

with no fractions supported. Maximum lease time is 600 seconds. Minimum lease time is

10 seconds.

 subscriptions: An array of subscriptions containing the following information

o eventType: Array of event types (CHANGED, CREATED, DELETED)

o urls: List of links relative to the server base URL from which events are to be

received. The list may contain strings that follow the string matching as defined

in Chap. String matching6 to reference multiple resources in a compact way. In

case a url is pointing to a list resource, the subscription will be created for each

element in the list (not the list itself). The client will also be informed of creation

and deletion of resources in that list, in case it is selected as part of the

eventType.

In case the MAP accepts the subscription, it will respond with a 201 ("Created"). The response

will contain further details about the subscription. The subscription will be created only for those

resources to which the client has access rights to.

The information provided in the response is as follows:

 subscriptionURL A URL where the client can inspect its subscription details. The URL

can also be used to unsubscribe.

 leaseTime The actual lease time, in which the client has to renew its subscriptions to

prevent the subscription and events to be deleted.

 bufferSize Actual size of the allocated event ring buffer.

Please note that the MAP may decide to enforce a different leaseTime and bufferSize as

requested by the client. Thus, a client has to adhere to the leaseTime contained in the response

and cannot assume that the originally requested time is going to be used for this subscription.

A subscription may not be accepted due to three main reasons. Either the panel is not able to

accommodate more subscriptions (e.g. maximum number of subscribers exceeded), because

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 20 of 39

the subscription request violates access rights or because the subscription request is

malformed.

In case the panel is rejecting the subscription due to resource limitations, a 503 “Service

Unavailable” error will be send as a response to a request. In this case, a client may try to

subscribe again at a later point in time or clean up existing subscriptions, if any.

In case the data in the request does not follow the specified scheme, a 400 ("Bad Request") will

be returned by the MAP.

Request

Verb POST

Query Parameters (none)

Request Body:

Name Type Value Range/Format Description

@cmd String SUBSCRIBE Fixed String to identify this

command

bufferSize Number 1 - 640 Requested Number of

events that will be stored

by the MAP without

overwriting an entry. The

actual buffer size is

decided by the MAP and

provided in the response.

leaseTime Number 10-600 Maximum number of

seconds between two

subscription renewal

activities i.e. time between

two event fetching

requests encoded as

JSON number. No

fractions supported. The

actual lease time is

decided by the MAP.

subscriptions Array of

touple of

{Array of

EventType,

Array of

urls}

EventType is one of the

following value

CHANGED, CREATED,

DELETED

urls as defined in this

specification

An array of subscriptions

containing the following

information:

- EventType: Array of

event types (CHANGED,

CREATED, DELETED)

- urls: List of links relative

to the server base URL

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 21 of 39

from which events are to

be received. The list may

contain strings that follow

the string matching as

defined in Chap. 6 String

matching to reference

multiple resources in a

compact way.

Response (Success)

Return Code 201

Content See below

Response Body

Name Type Value Range/Format Description

bufferSize Number Actual, allocated buffer size

leaseTime Number Actual lease time

subscriptionURL String A URL to the location of the

newly created subscription.

Response (Error)

See Chap. 11 Standard Errors.

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 22 of 39

5.3 Subscription Resource

The subscription resource represents an individual subscription. A client can inspect and delete

its subscription at this resource. Events can be fetched from the resource by sending a POST.

Overview

OII Type Supported Operations

OII.sub.1 Status Retrieval

Fetch Events

Unsubscribe

Object Structure

Name Type Value Range/Format Description

@type String ["OII.sub.1"] Fixed type identifier

@self String URL starting with "/" Link to the current

resource

leaseTime Number The actual lease time,

in which the client has

to renew its

subscriptions to

prevent the

{

 "bufferSize ": 4,

 "leaseTime": 600,

 "subscriptions": [

{ "eventType": ["CHANGE” "],

 "urls": [

 "/1.1.Area.2.5",

 "/1.1.Area.2.2"

],

"allowed": true },

{ “eventType”: [“CHANGED”,”CREATED”, “DELETED”]

 “urls”: [

 "/inc/*"

]

}

]

}

Fig. 11 Subscription Request Example

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 23 of 39

subscription and events

to be deleted. Minimum

is 10. Maximum is 600.

bufferSize

Number Actual size of the

allocated event ring

buffer.

subscriptions Array of

touple of

{Array of

EventType,

Array of

urls}

EventType is one of the

following value

CHANGED, CREATED,

DELETED

URLs encoded as String

Detailed information

about the description in

the same format as

given during the

subscription request

Example

5.3.1 Status Retrieval

Request

Verb GET

Query Parameters (none)

Response (Success)

Return Code 200

Content Subscription object structure

Response (Error)

{

 "@type": ["OII.sub.1"],

 "@self": "/sub/1",

 "leaseTime": 600,

 "bufferSize": 50,

 "subscriptions": [

 {

 "urls": ["*"],

 "eventType": [

 "CREATED",

 "DELETED",

 "CHANGED"

]

 }

]

}

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 24 of 39

See Chap. 11 Standard Errors.

5.3.2 Fetch Events

A client fetches events from the buffer of this subscription by using a POST request with the

defined, optional parameters in the body of the request. Once events are successfully delivered

to the client, they will be deleted from the internal event buffer. Thus, events can only be

fetched once.

Fetching the events is done by sending a POST request. Parameters are defined to allow a fine

grained control on the event delivery to the client. The available parameters are:

 maxEvents The maximum number of events contained in the answer to this request. If

maxEvents is omitted, the number of events is set to the bufferSize of the subscription.

maxEvents is used to assure that the client only fetches as much events as it can

process in one batch.

 minEvents The minimum number of events contained in the answer to this request, i.e.

a request will return when at least minEvents are available. If minEvents is omitted or

minEvents is specified as 0, minEvents has the same value as maxEvents (at maximum

the bufferSize of the subscription).

 maxTimeThe maximum time in seconds a request will block. When maxTime expires,

the panel will reply with the currently available events. If no events are available, an

empty event list will be provided. The default value of maxTime is 0. Thus, if maxTime is

omitted or set to 0 the request will return immediately with the available events (up to

maxEvents). The maximum possible value for maxTime is 100. Thus, the call will never

block longer than for 100 seconds.

The panel will respond to a POST request as soon as the first of the previously specified

conditions is fulfilled. Thus, in case minEvents is not reached, the answer will return after

maxTime. In case minEvents are reached, the response is send immediately.

By adjusting maxEvents, minEvents and maxTime the client has the opportunity to optimize the

poling behaviour to its need. For example, when the client expects events rarely (e.g. alarm

messages) it could set “minEvents”: 1 and “maxTime”: 100. Thereby, the client is notified as

soon as a single event comes in. Using a long maxTime ensures that the poll request does not

need to be repeated often. Similarly, if it is expected that many events come in (e.g. state

changes in a disarmed area), the throughput can be improved by choosing a large minEvents

number e.g. “minEvents”: 100 to make sure that the data is transmitted efficiently. maxEvents

can be defined to ensure that not too many events are fetched which may not be possible to be

handled be the client e.g “maxEvents”:200.

In addition, a client can extend its lease by sending a request with “maxEvents” set to 0.

Thereby, the lease is extended and the response does not contain any events. This is

particularly useful, if the client is currently not able to process any events but wants to keep its

subscription on the panel.

Request

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 25 of 39

Verb POST

Query Parameters (none)

Object Structure

Name Type Value Range/Format Description

@cmd String FETCHEVENTS Fixed String to identify

this command

maxEvents Number Positive int. Values beyond

the allocated buffer size will

have no effect on the

request.

Optional. Default value

is “unlimited”.

minEvents Number Positive int. Optional. If not specified

or specified as 0,

minEvents =

maxEvents. If a request

specifies minEvents

bigger than maxEvents,

minEvents will be set to

maxEvents.

maxTime Number 0-100 Optional. Maximum

number of seconds the

call will block. Maximum

value is 100. Minimum

is 0.

Response (Success)

Return Code 200

Content evt Object

Object Structure

Name Type Value Range/Format Description

evts Array

of

events

 List of fetched

events. May be

empty, if no

events are

present or

maxEvents = 0

Event entry structure

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 26 of 39

Name Type Value Range/Format Description

id String <PanelEventID>.<SubscriptionSequenceNumber> Id of this event

consisting of

panel and local

subscriber id.

time String OII date time with millisecond precision Local date time

including time

zone information

for when the

event occurred.

type String “CREATED”|”DELETED”|”CHANGED” Event type

classifier

props Array Array of Strings A list of property

keys whose value

has changed.

The list contains

at least a single

entry for an event

of type

CHANGED. In all

other cases the

list will be empty.

evt Object The resource

representation as

would be

provided using a

GET on that

resource directly

after the event

happened.

Response (Error)

See Chap. 11 Standard Errors.

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 27 of 39

5.4 Unsubscribe

This operation cancels a subscription. The MAP will free the event buffer associated to this

subscription.

Request

Verb DELETE

Query Parameters (none)

Request Body:

-

Response (Success)

Return Code 204

Content -

Response (Error)

{

 "evts": [

 "id": 2345.4,

 "time": "2014-10-29T13:25:22.357-07:00",

 "type": "CHANGED",

 "props": [“armed”],

 "evt": {

 "@type": "IN.area.1",

 "@self": "/1.1.Area.2.1",

 "armed": false

},

 "id": 4783.5,

 "time": "2014-10-29T13:29:01.25-07:00",

 "type": "CHANGED",

 "props": [“armed”],

 "evt": {

 "@type": "IN.area.1",

 "@self": "/1.1.Area.2.2",

 "armed": true

}

]

}

Fig. 12 Example Fetch Events Response

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 28 of 39

See Chap. 11 Standard Errors.

6 String matching

In some cases a request from a client may need to reference multiple resources. This can

happen for example when a list resource is accessed but not all entries are required. Also for

event registration a mechanism is needed to specify the resources to which the client wants to

subscribe to.

To this end, a string matching language is required that allows referencing of multiple OII.ids in

an efficient way. In general, regular expressions are used for such use cases. However, regular

expressions are deemed to be complex for the scope required in the context of the OII. In

addition, the string matching is also to be used as part of query elements in a URL. Thus, the

characters for the string matching language need to comply with the rules defined for HTTP

URLs. Regular expressions do not follow these rules, so that they would need to be %-encoded

which makes them not readable for humans. As a consequence, a simple string matching

language is defined to cover most use cases required in the context of the OII.

Two main elements are defined for string matching:

 Wildcard “*”: A wildcard matches zero or more characters and numbers. Thus, it

follows the commonly known syntax as used in file systems where for example

“/1.1.Area.2.*” matches all ids which start with “/1.1.Area.2.”.

 List of Numbers “()”: A comma separated list of numbers or number range identifiers

enclosed in round brackets i.e. “(“,”)”. For example, it can be used to specify a simple

list of numbers like “/1.1.Area.2.(2,5,8)” which matches “/1.1.Area.2.2”, “/1.1.Area.2.5”,

“/1.1.Area.2.8”. In addition, number ranges can be specified (e.g. 5-10, 100-200). A

string matches the expression, if it contains a number out of the given interval including

the given limits. For example, “/1.1.Area.2.(2-4)” matches “/1.1.Area.2.2”, “/1.1.Area.2.3”

and “/1.1.Area.2.4”. The list may contain numbers and number ranges at the same time.

For example, “/1.1.Area.2.(2-4,8)” matches “/1.1.Area.2.2”, “/1.1.Area.2.3”,

“/1.1.Area.2.4”, “/1.1.Area.2.8”. Please note that “*” cannot be used as a replacement for

a number in a list of numbers, as its meaning would be ambiguous.

In order for the string matching language to be used in the context of the OII, the characters

“*”,”(“ and “)” are explicitly reserved and may not be used as part of a OII resource url.

7 Feature discovery

In order for a client to interact with an OII server, the client needs to discover URLs of the

relevant resources, such as “areas” or “points”. For each version of the OII, the locations of

these resources will be fixed. However, in the future the URLs may change. In order to facilitate

compatibility, a client can discover the URLs of the main resources using a dedicated

description resource.

To this end, any OII server MUST host a resource at the URL “/desc” directly at its root. This

description resource contains links to all major, relevant resources (see below). The description

should be the first starting point for any client that wants to interact with a device over OII.

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 29 of 39

Overview

OII Type Supported Operations

OII.desc.1 Status Retrieval

Object Structure

Name Type Value Range/Format Description

@type Array

of

strings

[OII.desc.1] Fixed string identifier

@self String “/desc” Link to this resource

udn

String [5digits].[11digits] Serial number of the panel

e.g. “81123.74325266505”

baseURL String Absolute URL to the OII

Server described by this

resource (e.g. https://myserver

or

https://10.24.2.75:586/server1)

friendlyName String Short description for the end

user, e.g. “Intrusion Panel –

Room 127”

firmwareVersion String The version of the firmware

running on the device in

format

<Major>.<Minor>.<Micro> e.g.

1.3.9304

modelName String Identification of the MAP500

model, such as

MAP5000,

MAP5000-S,

MAP5000-COM,

MAP5000-SC

profiles Array

of

Strings

 It contains one or more Device

Profile Identifiers (e.g.

“IN.MAP5000.1.0”,

“IN.MAP5000.2.2”). A Device

Profile Identifier references a

dedicated MAP5000 resource

model. In the future, a MAP

can provide information about

the set of resource models

that are implemented. This

https://myserver/
https://10.24.2.75:586/server1

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 30 of 39

allows a client to deduct the

overall compatibility with the

panel.

mainResources Array

of

@type

and ref

tuple

 A list of types and links for all

main resources. The links are

relative links. The absolute link

can be created by prepending

the baseURL to the given

relative link of the resource.

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 31 of 39

Example Description Resource:

{

 "@self": "/desc",

 "@type": ["OII.desc.1"],

 "baseURL": "https://192.168.1.20" ,

 "udn": "OIIMockup-1234567890",

 "friendlyName": "MAP5000 OII Test Server",

 "firmwareVersion": "1.42.99",

 "modelName": "ICP-MAP5000-S",

 "profiles": ["IN.MAP5000.1.0"],

 "mainResources": [

 {

 "@type": ["OII.list.1", "IN.areaList.1"],

 "ref": "/areas"

 },

 {

 "@type": ["OII.list.1", "IN.pointList.1"],

 "ref ": " /points"

 },

 {

 "@type": ["OII.list.1", "OII.subList.1"],

 "ref ": " /sub"

 },

 {

 "@type": ["OII.list.1", "IN.incList.1"],

 "ref ": " /inc"

 },

 {

 "@type": ["IN.history.1"],

 "ref": " /history"

 },

 {

 "@type": ["IN.time.1"],

 "ref": " /time"

 },

 {

 "@type": ["IN.userList.1"],

 "ref": " /users"

 }

]

}

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 32 of 39

7.1 Status Retrieval

Request

Verb GET

Query Parameters (none)

Response (Success)

Return Code 200

Content Description object structure

Response (Error)

See Chap. 11 Standard Errors.

8 Supervision

In many cases, supervision of the MAP is required to indicate potential problems in the system.

Thus, supervision is also required for communication over the OII. The TCP connection cannot

be used for supervision purposes as a client may open and close multiple TCP connections

over time. Thus, MAP supports supervision on a user basis. A connection to a user will be

considered “available” if the MAP receives any OII message (get status, poll event, etc.) in a

defined, configurable timespan e.g. 10 seconds. If no OII message is received in this interval,

the connection is considered to be broken and a trouble will be detected. If supervision of

redundant paths is required, each redundant client will need to use a different user for

supervision, so that failure of a connection to each client can be detected. If both clients would

use the same user, the panel would not recognize the loss of one connection, as the

supervision timer would be reset by the OII message from the other, working client. Thus, the

same user may be used, if only a trouble shall be generated if both clients are unavailable.

Every OII message results in a response to a client, thus the proposed solution will also be

sufficient for the client to decide whether the MAP is still available.

Supervision is a feature that has to be configured with the MAP over RPS and cannot be

configured over the OII. As any request from a user will be used to reset the supervision timers,

no dedicated supervision resource is required.

9 Discovery

Auto discovery of a MAP is currently not supported. Clients need to know the IP address of the

panel to use the OII. In case DNS is available, the serial number of the panel can be used as a

domain name where the “.” Is replaced by “-“ (e.g. 94047.24269997507 results in 94047-

24269997507 as a domain name). Future releases may include a discovery feature, allowing

discovery of available panels in the network.

10 Communication

This chapter contains details on the communication protocol properties.

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 33 of 39

10.1 TCP

A client may use one or many TCP connections to issue requests to the MAP. A client is also

free to either open a new connection for a new request or reuse an already established

connection. The maximum number of TCP connection to the MAP is 20.

10.2 URI Encoding

URI and thereby @self must be conformant to RFC3986 [URI]. Furthermore, the characters

“*”,”(“ and “)” are explicitly reserved and may not be used as part of a URI and @self, in order to

enable use of the string matching language of the OII.

10.3 Responses and Content Types

All resources in the scope of the OII base specification will be in JSON. Thus, the Content-Type

“application/json” is expected for responses with Code 200/201. The 409 error code is used

when there are application reasons that prevent the execution of a request (e.g. trying to arm an

area that is not ready to arm).

The following list provides an overview of the return codes used in the scope of the OII and

which content and content type they will provide. The individual resources defined in the OII

resource model will follow this definition.

Return Code Content Type Content

200 “OK” application/json Object structure as defined in resource

model

201 “Created” application/json Object structure as defined in resource

model

202 “Accepted” - None

204 “No Content” - None

400 “Bad Request” - None

403 “Forbidden” - None

404 “File not Found” - None

409 “Conflict” text/plain String identifier explaining the reason for

the conflict

503 “Service

Unavailable”

- None

In the current version of the OII content negotiation is not supported. Thus, the client has to

accept the content format as defined.

10.4 HTTP Response Codes

The following HTTP response codes are those considered to be most relevant for the OII.

10.4.1 200 ("OK")

This response code indicates a successful transaction. It will be returned for a successful GET

request. The response will contain the resource representation. PUT, POST or DELETE will

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 34 of 39

return 201 ("Created") after successful execution or 202 after successful acceptance or 204

(“No Content”) after successful execution.

10.4.2 201 ("Created")

This response code indicates that a new resource has been created. This can happen as a

result to a PUT or POST request.

10.4.3 202 (“Accepted”)

This response code indicates that the request has been accepted but the processing has not

been completed. The request may or may not eventually succeed.

10.4.4 204 ("No Content")

This response code indicates a successful transaction, which does not contain any additional

data in the response. This will be used, for example. as response to a successful DELETE.

10.4.5 400 ("Bad Request")

This response code indicates a malformed or otherwise faulty request.

10.4.6 401 ("Unauthorized")

This response code indicates that the client does not have the appropriate access rights to

execute the requested action on the server. It indicates that an authorization needs to be done

for the request.

10.4.7 403 ("Forbidden")

A valid request was sent, but the user is not allowed to conduct the requested operation.

10.4.8 404 ("Not Found")

This response code indicates that the referenced resource does not exist.

10.4.9 409 (“Conflict”)

This command code is returned when a command is not executed due to application specific

reasons. The body of the error response will contain further information on why the command

was not executed.

This response code is also returned when a command on a list resource was issued with an

“atomic” parameter. The code indicates that the execution of the command was not possible.

The body of the response will contain the list of resource URLs which prevented execution of

the command.

10.4.10 414 (“Request-URI Too Long”)

Response code is used if the URI exceeds the maximum supported size (128 bytes). In the

context of the OII are intended to be kept short, but a client may increase the size of a URI by

adding query parameters. String matching can be used to reduce the query length.

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 35 of 39

10.4.11 503 ("Service Unavailable")

This response code indicates that the server is in a temporary overload condition and thus

unable to serve the request. The client can retry the request at a later point in time

10.5 Security

The OII provides two levels of communication security. On transport level, TLS is used.

Particular focus is given on only supporting TLS in a configuration that is compliant with the BSI

guidelines [BSI]. In addition, each request to the OII is authorized using username and

password information. The same access rights are granted to a user over the OII as over a

MAP key pad (please note that a user has to be configured as OII user via RPS). This ensures

that the authorization is handled consistently throughout the MAP system.

10.5.1 Transport Layer Security

The OII supports TLSv1.2 with the following cipher suites with forward secrecy:

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384

The following cipher suites are supported in addition to the previously listed once if perfect

forward secrecy is not required (RPS configuration options):

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256

TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384

TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384

This follows the suggestions of the BSI in [BSI]. The OII by default will not support ciphers other

than proposed by the BSI in order to ensure state of the art security and to prevent adding

vulnerabilities by usage of out dated ciphers.

For clients that cannot support TLSv1.2, the OII shall allow downgrade to TLSv1.0. With

TLSv1.0, the following cipher suites will be supported:

TLS_RSA_WITH_RC4_128_MD5

TLS_RSA_WITH_RC4_128_SHA

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_DHE_RSA_WITH_AES_128_CBC_SHA

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 36 of 39

The downgrade to TLSv1.0 can be activated using RPS configuration options. Downgrade to

TLSv1.0 is possible only if perfect forward secrecy is not required.

The MAP is not going to validate client certificates. Thus, similar as with banking portals, any

client is allowed to connect to the MAP via TLS, but any activity on the OII will involve

application layer security measures (username, password). The MAP itself will provide a self-

signed certificate which is unique for each MAP product.

10.5.2 Certificate

Each MAP5000 has a unique, self-signed RSA certificate. The public part of the certificate can

be downloaded as part of the TLS handshake. A client that wants to do sever authentication

has to gain access to the certificate in a secure manner (e.g. directly connecting to the

MAP5000 via the build in Ethernet plug or via a secure network) to ensure that the certificate

belongs to the desired MAP. The upload of certificates to the MAP5000 is currently not

possible.

10.5.3 Application Layer Security

OII requires HTTP authentication. HTTP Digest is used to provide username and password

information. Username and password are matched with the user database as configured via

RPS. An OII request will only be executed if the password is valid and the user has the

appropriate access rights to conduct the operation. This even includes inspecting the status of

an area. Thus, an OII user will not be able to see or execute functionality that would not appear

on a keypad when the user is logged in.

In the current version of the OII, only users that have all permissions in the system can be

configured as OII users.

11 Standard Errors

The following list contains the standard errors and their semantics. Any client that uses the OII

is expected to support at least the given errors.

These errors are:

Code Description Meaning

400 Bad Request Request content or filter not conformant to the specification.

401 Unauthorized User credentials are required to execute the request. This error

occurs when no or incorrect credentials are provided.

403 Forbidden User not allowed to execute the command or the command not

supported by the resource.

With reactionless interface activated, all commands are forbidden.

404 File not Found Resource does not exist or user does not have permissions to

access the resource.

409 Conflict Application specific reasons prevent command execution e.g. arm

on an area that is not ready to arm.

503 Service Server cannot serve the request at the moment. The client can try

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 37 of 39

unavailable to execute the same request at a later point in time.

12 Change History

Date Description Author

17.04.2014 First version for external review Barisic

07.05.2014 Changed Event timestamp, Changed query

parameters names from “_” to “-“

Barisic

27.08.2014 Removed OII.Manufacturer from object

structure of /desc (Section 8)

Arun Ram

19.09.2014 Clean up Barisic

16.10.2014 Section 9 Feature Discovery – removed

OII.Manufacturer from the example

Arun Ram

30.10.2014 Introduced BaseURL for description

Defined property naming concept

Renamed OII.Type and OII.ID to @type and

@self

Introduced @cmd

Removed hierarchical property keys

Defined timestamp format

Changed filter from id to url

Barisic

21.11.2014 Corrected incident url in subscription example in

Fig.12

Arun Ram Moorthi

12.12.2015 Added description on TCP timeout behaviour

Added MAX time definition

Added date definition

Daniel Barisic

14.12.2015 Added atomic parameter for list resource

Added allowed for subscription

Added subscription description for list resources

Daniel Barisic

09.01.2015 Section 5.2.1 Subscription List Resource –

Status Retrieval : Corrected “ri” to “url”

Section 11.5.10 : 409 (“Conflict”) : Updated

description

Section 12 : Modified descriptions for 403

“Forbidden” and 409 “Conflict” error codes.

Arun Ram Moorthi

18.01.2015 Section 8 : Feature Discovery : Object Structure

- Modified @type to [OII.desc.1]

Arun Ram Moorthi

18.03.2015 Added section 3.8 Command Execution

Section 4 List Resource: Removed “allowed”

flag as query parameter.

Updated error responses for operations on lists

when atomic true/false.

Added 403 response when unsupported

operation requested on a list resource

Daniel Barisic

Arun Ram Moorthi

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 38 of 39

Section 5.2.1 : Removed allowed flag

Section 5.2.2 : Removed allowed flag

Section 5.3.2 : Updated description for

minEvents parameter

Removed Section 7 : Caching

Added Section 10.4 : Responses and Content

Types

Added Section 10.5 : Added 202 (“Accepted”)

Removed 304 (“Modified”), 405(“Method not

allowed”), 412 (“Precondition Failed”)

Updated Section 10.6.3 : Application Security

Updated Section 11 : Standard Errors :

Description updated

26.03.2015 Minor, editorial clean up Barisic

21.07.2015 Correction of return code statement in Section 4 Barisic

06.08.2015 Removed DH based, non perfect forward

secrecy ciphers.

Barisic

01.09.2015 Added comment on FetchEvents with regards to

minEvents and maxEvents in relation to the

maxBufferSize of the subscription

Schröer

20.11.2015 Section 10.5.1 : Updated section with support

for TLSv1.0 ciphers

Arun Ram Moorthi

13 References

[HTTP] http://www.ietf.org/rfc/rfc2616.txt

[URL] http://www.ietf.org/rfc/rfc3986.txt. HTTP spec. references

http://www.ietf.org/rfc/rfc2396.txt but RFC3986 obsoletes RFC2396.

[JSON] Specification http://www.ecma-international.org/publications/files/ECMA-

ST/ECMA-404.pdf, Official Website http://www.json.org/

[JSTY] JSON Style Guide

https://google-styleguide.googlecode.com/svn/trunk/jsoncstyleguide.xml

[RFC3339] IETF RFC3339 “Date and Time on the Internet: Timestamps”,

http://www.ietf.org/rfc/rfc3339.txt

[BSI] Bundesamt für Sicherheit in der Informationstechnik, Technische Richtlinie TR-

02102-2 (Version 2014-01)

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.json.org/
https://google-styleguide.googlecode.com/svn/trunk/jsoncstyleguide.xml
http://www.ietf.org/rfc/rfc3339.txt
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102-2_pdf.pdf?__blob=publicationFile

Security Systems
MAP Open Intrusion Interface

2016.04 | 2 Base Specification Page 39 of 39

Bosch Sicherheitssysteme GmbH

Robert-Bosch-Ring 5

85630 Grasbrunn

Germany

www.boschsecurity.co

m

© Bosch Sicherheitssysteme GmbH, 2015

http://www.boschsecurity.com/
http://www.boschsecurity.com/

