
Simple demo of Bosch Security SDK
SimpleWpfClient
The sample program is a WPF client. The implementation that used the SDK is in the class

MainWindowViewModel, which has very little WPF-specific code in it.

The client does the following

 Accepts connection information from the user.

 Allows the user to connect and disconnect from the panel.

 While connected, lets the user turn on and off an Output.

 Logs any Output status change to the screen.

Steps to using the SDK

Instantiate the SessionManager
The SessionManager enables the client to manage the life cycle of a Session: Initialize, Connect,

Disconnect and Destroy. The SessionManager also provide a reference to a MessageBus. The

MessageBus is the communication conduit between the client and the Session.

In the demo application, this is done in the MainWindowViewModel constructor:

 public MainWindowViewModel()
 {
 _sessionManager = new SessionManager(new TransportProviderFactory());
 Bus = _sessionManager.MessageBus;

Register for Message Bus Events
Next you want subscribe to various events from the Session you will be creating. In the demo app this is

done in the RegisterForMessageBusEvents method. We register for 3 connection events:

 SessionConnectedEvent

 SessionConnectFailedEvent

 SessionClosedEvent

Since our simple application is showing information about Outputs, we register for events concerning

outputs:

 OutputAddedEvent

 OutputStateChangedEvent

Note that each listener filters based on a Session Id. That Session id is generated when you initialize a

session.

Initialize the Session
Once you have the connection information from the user, you initialize a Session:

_sessionId = _sessionManager.InitializeSession(sdkProfile, null);

You must store the session id returned from this command, as you will need to communicate to the

session you have created, and to filter messages on the Bus.

Connect to the Panel
When you connect to a panel, you must tell the SDK what types of events you are interested in. This is

done be passing a list of PanelEvents to the SDK. In our example, we are requesting Output changes:

 _requestedEvents = new List<RequestedEvent>
 {
 new RequestedEvent { PanelEvent = PanelEvents.OutputStateChanges,
 IntervalInSeconds = 5, MetadataRetrievalSeconds = 60 }
 };

The IntervalInSeconds parameter determines how often the SDK polls for state, such as whether or not

an Output is on. MetadataRetrievalSeconds is how often the SDK polls for metadata changes, such as

Output text.

To connect we make the following call:

 await _sessionManager.ConnectAutomationSession(_sessionId, _requestedEvents);

There is no direct reply from this command. Instead either a SessionConnectedEvent or a

SessionConnectFailedEvent will be published by the Session. You would take appropriate actions in

those handlers.

Controlling the Panel
By convention, messages that the client subscribes to are Events, while messages the client publishes

are Commands. In the demo, the command to control an Output is issued in

 private void ControlOutput(int outputNumber, OutputCommands outputCommand)
 {
 Bus.Publish(new ControlOutputCommand(_sessionId, outputNumber,

outputCommand));
 }

Disconnecting from the Panel
Disconnecting from the panel is straightforward:

 _sessionManager.DisconnectSession(_sessionId);

Destroying the Session
This command disposes a session. It can no longer be used once it is destroyed.

 _sessionManager.DestroySession(_sessionId);

Notes
For simplicity, the demo app creates and destroys a Session each time the user clicks Connect. This is not

necessary if the connection information does not change. You could initialize the session, connect and

disconnect many times, then destroy the session when you are finished with it. A common use case is

implementing reconnect logic.

